20 research outputs found

    Magneto-optical rotation and cross-phase modulation via coherently driven tripod atoms

    Full text link
    We study the interaction of a weak probe field, having two orthogonally polarized components, with an optically dense medium of four-level atoms in a tripod configuration. In the presence of a coherent driving laser, electromagnetically induced transparency is attained in the medium, dramatically enhancing its linear as well as nonlinear dispersion while simultaneously suppressing the probe field absorption. We present the semiclassical and fully quantum analysis of the system. We propose an experimentally feasible setup that can induce large Faraday rotation of the probe field polarization and therefore be used for ultra-sensitive optical magnetometry. We then study the Kerr nonlinear coupling between the two components of the probe, demonstrating a novel regime of symmetric, extremely efficient cross-phase modulation, capable of fully entangling two single-photon pulses. This scheme may thus pave the way to photon-based quantum information applications, such as deterministic all-optical quantum computation, dense coding and teleportation.Comment: Corrected typo

    Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications

    Get PDF
    Persistent spectral hole burning is studied for several free-based and metallo-naphthalocyanine derivatives in polymer hosts. These materials exhibit a strong 0-0 absorption band in the region 800 nm matching the wavelength range of most semiconductor diode lasers and Ti:Sapphire lasers. Metallo-naphthalocyanines demonstrate a nonphotochemical hole-burning mechanism that is likely related to rotations of small molecular groups attached to a relatively rigid molecular ring. Free-base molecules exhibit the regular proton phototautomerization mechanism of hole burning. Spectral- and hole-burning parameters were determined for eight materials; in particular, the hole-burning kinetics was analyzed and the quantum efficiencies were determined to be between 0.1% and 1%. Holograms (data pages) in the transmission geometry were successfully recorded in the materials studied using single-frequency laser diodes

    Quantum coherence in a degenerate two-level atomic ensemble: for a transition Fe=0↔Fg=1F_e=0\leftrightarrow F_g=1

    Full text link
    For a transition Fe=0↔Fg=1F_e=0\leftrightarrow F_g=1 driven by a linearly polarized light and probed by a circularly light, quantum coherence effects are investigated. Due to the coherence between the drive Rabi frequency and Zeeman splitting, electromagnetically induced transparency, electromagnetically induced absorption, and the transition from positive to negative dispersion are obtained, as well as the populations coherently oscillating in a wide spectral region. At the zero pump-probe detuning, the subluminal and superluminal light propagation is predicted. Finally, coherent population trapping states are not highly sensitive to the refraction and absorption in such ensemble.Comment: 9 pages, 6 figure

    Storing and releasing light in a gas of moving atoms

    Get PDF
    We propose a scheme of storing and releasing pulses or cw beams of light in a moving atomic medium illuminated by two stationary and spatially separated control lasers. The method is based on electromagnetically induced transparency (EIT) but in contrast to previous schemes, storage and retrieval of the probe pulse can be achieved at different locations and without switching off the control laser.Comment: 4 pages, 3 figures, revised versio

    In-situ velocity imaging of ultracold atoms using slow--light

    Full text link
    The optical response of a moving medium suitably driven into a slow-light propagation regime strongly depends on its velocity. This effect can be used to devise a novel scheme for imaging ultraslow velocity fields. The scheme turns out to be particularly amenable to study in-situ the dynamics of collective and topological excitations of a trapped Bose-Einstein condensate. We illustrate the advantages of using slow-light imaging specifically for sloshing oscillations and bent vortices in a stirred condensate

    From Storage and Retrieval of Pulses to Adiabatons

    Get PDF
    We investigate whether it is possible to store and retrieve the intense probe pulse from a Λ\Lambda-type homogeneous medium of cold atoms. Through numerical simulations we show that it is possible to store and retrieve the probe pulse which are not necessarily weak. As the intensity of the probe pulse increases, the retrieved pulse remains a replica of the original pulse, however there is overall broadening and loss of the intensity. These effects can be understood in terms of the dependence of absorption on the intensity of the probe. We include the dynamics of the control field, which becomes especially important as the intensity of the probe pulse increases. We use the theory of adiabatons [Grobe {\it et al.} Phys. Rev. Lett. {\bf 73}, 3183 (1994)] to understand the storage and retrieval of light pulses at moderate powers.Comment: 15 pages, 7 figures, typed in RevTe

    Slow Light in Doppler Broadened Two level Systems

    Get PDF
    We show that the propagation of light in a Doppler broadened medium can be slowed down considerably eventhough such medium exhibits very flat dispersion. The slowing down is achieved by the application of a saturating counter propagating beam that produces a hole in the inhomogeneous line shape. In atomic vapors, we calculate group indices of the order of 10^3. The calculations include all coherence effects.Comment: 6 pages, 5 figure

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section
    corecore